Welcome, thank you for visiting my website. I am a passionate revenue cycle analyst with a strong focus on
communication and tangible results. Below are some samples of my revenue cycle analysis, data visualization and source code using both Python and R programming languages.
import matplotlib.pyplot as plt
year = [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023]
CIGNA = [ 29,24,18,23,15,17,10,8,6]
HUMANA = [ 32,26,20,25,16,19,14,10,8]
AETNA = [ 35,28,22,26,19,21,17,12,9 ]
plt.plot ([],[], color='b', label = 'CIGNA')
plt.plot ([],[], color='y', label = 'HUMANA')
plt.plot ([],[], color='g', label = 'AETNA')
plt.stackplot(year, CIGNA, HUMANA, AETNA, colors = ['b', 'y', 'g'])
plt.legend()
plt.title('Claim Adjustment Reduction')
plt.xlabel('year')
plt.ylabel('Millions')
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.array(["M54", "M64", "MA33", "MA41"])
y = np.array([30, 48, 17, 37])
plt.barh(x, y, color = '#af4cab', height = 0.3)
plt.title("Remittance Advice Remark Codes")
plt.xlabel("Denials Per Thousand Claims")
plt.show()
import matplotlib.pyplot as plt
tob_countA = [73, 76, 71, 85, 74, 80, 89, 77, 83, 79, 85, 80]
cab_countB = [58, 61, 56, 68, 59,65, 71, 62, 67, 63, 69, 65]
month = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
plt.plot(month, tob_countA, 'green')
plt.plot(month, cab_countB, 'blue')
plt.xlabel("Month")
plt.ylabel("Revenue (Thousands)")
plt.title("Monthly Revenue")
plt.legend(['Billed Amount', 'Reimbursement'])
plt.grid(axis = 'y')
plt.show()
x <- c(10,20,30,40)
pie(x, init.angle = 90)
mylabel <- c("Cigna", "Humana", "Aetna", "Molina")
colors <- c("lightblue", "orangered", "seagreen", "purple4")
pie(x, label = mylabel, main = "Insurance Payors", col = colors)
legend("bottomright", mylabel, fill = colors)
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
x = np.array(["CO 16", "CO 11", "CO 22", "CO B9", "CO 41", "CO 29",
"CO 97", "CO 16"])
y = np.array([30, 18, 21, 12, 35, 27, 12, 28])
plt.bar(x, y, width = 0.3, color = "#4CAF50")
plt.title("Denial Root Cause")
plt.xlabel("Denial Code")
plt.ylabel("Claims Per Thousand")
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.array([5,7,8,2,17,10,9,4,11,12])
y = np.array([32,40,52,48,50,26,9,27,27,45])
plt.scatter(x, y, color = '#fe2038')
font1 = {'family':'arial','color':'black','size':13}
font2 = {'family':'arial','color':'black','size':13}
plt.grid()
plt.title("Pre-Adjudication Rejections", loc = 'center', fontdict = font1)
plt.xlabel("Electronic Submission Batches", loc = 'center', fontdict = font2)
plt.ylabel("Rejected Claims Per Thousand", loc = 'center', fontdict = font2)
plt.show()
import matplotlib.pyplot as plt
labels = 'Commercial', 'Medicaid', 'Medicare', 'Other'
sizes = [15, 30, 45, 10]
fig1, ax1 = plt.subplots()
ax1.pie(sizes, labels=labels, autopct='%1.1f%%',
startangle=90)
ax1.axis('equal')
plt.show()
colnames <- c("Q1","Q2","Q3","Q4")
rowname <- c("Income","Expenses","Profit")
ratio <- matrix(c(10,6,4,14,8,6,16,11,5,12,7,5),
c(3),
byrow=FALSE)
colnames(ratio) <- colnames
rownames(ratio) <- rowname
barplot(ratio,
beside=TRUE,
main="Income Statement",
xlab = "Business Quarters",
ylab = "Millions",
col=c("springgreen4","purple4","orangered"),
border="black")
legend(x = "topright", box.col = "black",
bg ="white", box.lwd = 3,
legend=c("Income", "Expenses", "Profit"),
fill = c("springgreen4","purple4","orangered"))